高二數(shù)學網(wǎng)上輔導班
發(fā)布于:2022-04-02 10:05:42高二數(shù)學網(wǎng)上輔導班,簡單學習網(wǎng)師資很強,還有贈送講義。
數(shù)學高二解題技巧:換元法講解
換元的思想和方法,在數(shù)學中有著廣泛的應(yīng)用,靈活運用換元法解題,有助于數(shù)量關(guān)系明朗化,考試技巧,變繁為簡,化難為易,給出簡便、巧妙的解答。
在解題過程中,把題中某一式子如f(x),作為新的變量y或者把題中某一變量如x,用新變量t的式子如g(t)替換,即通過令f(x)=y或x=g(t)進行變量代換,得到結(jié)構(gòu)簡單便于求解的新解題方法,通常稱為換元法或變量代換法。
用換元法解題,關(guān)鍵在于根據(jù)問題的結(jié)構(gòu)特征,選擇能以簡馭繁,化難為易的代換f(x)=y或x=g(t)。就換元的具體形式而論,是多種多樣的,常用的有有理式代換,根式代換,指數(shù)式代換,對數(shù)式代換,三角式代換,反三角式代換,復變量代換等,宜在解題實踐中不斷總結(jié)經(jīng)驗,掌握有關(guān)的技巧。
例如,用于求解代數(shù)問題的三角代換,在具體設(shè)計時,宜遵循以下原則:(1)全面考慮三角函數(shù)的定義域、值域和有關(guān)的公式、性質(zhì);(2)力求減少變量的個數(shù),使問題結(jié)構(gòu)簡單化;(3)便于借助已知三角公式,建立變量間的內(nèi)在聯(lián)系。只有全面考慮以上原則,才能謀取恰當?shù)娜谴鷵Q。
換元法是一種重要的數(shù)學方法,在多項式的因式分解,代數(shù)式的化簡計算,恒等式、條件等式或不等式的證明,方程、方程組、不等式、不等式組或混合組的求解,函數(shù)表達式、定義域、值域或最值的推求,以及解析幾何中的坐標替換,普通方程與參數(shù)方程、極坐標方程的互化等問題中,都有著廣泛的應(yīng)用。
以上就是關(guān)于高二數(shù)學網(wǎng)上輔導班的詳細介紹,更多與高二輔導有關(guān)的內(nèi)容,請繼續(xù)關(guān)注數(shù)豆子。